

Analysis and Control of a Grid-Integrated Solar/Wind/Fuel Hybrid System for Renewable Energy with Power Quality Enhancement

¹Rakesh Binjhade, ²Amit Kumar Asthana

¹Research Scholar, Department of Mechanical Engineering, Truba Institute of Engineering & Information Technology Bhopal (M.P.) India

²Assistant Professor, Department of Mechanical Engineering, Truba Institute of Engineering & Information Technology Bhopal (M.P.) India

rakeshbinjhade@gmail.com, asthana603@gmail.com

* Corresponding Author: Rakesh Binjhade

Abstract:

Increasing demand for electric generation and environmental concerns have led to hybrid renewable energy systems that integrate multiple energy sources to enhance efficiency and reliability. Traditional voltage source controllers in hybrid systems suffer from several problems—the severe harmonic distortion, poor transient response, and lack of voltage regulation during rapid load changes. This paper presents a quality controller enhancement based on multi-objective adaptive constraints for a grid-integrated hybrid solar–wind–fuel cell energy system design. The system consists of PV and wind power generation modules that are interfaced through a boost converter and inverter, respectively, with the fuel cell keeping the energy balanced and stable. The controller operates on the dq0 reference frame and performs dynamic control over voltage and current with measures against harmonic distortion to enhance the overall power quality. Simulations in MATLAB/Simulink compare the studied controller and the conventional voltage source control; simulation results show great improvements from added value-one from 1.40% to 0.39% in voltage THD, from 2.86% to 1.95% in current THD, while reactive power improved from 9936 Var to 11,300 Var. Voltage was stably regulated at 500 V, exhibiting even better dynamic response under transient loading. The above benchmark results confirm this novel control methodology can provide power quality, energy efficiency, and stability, and reliability improvements to smart grid applications.

Keywords: Hybrid renewable energy system, solar–wind–fuel cell integration, adaptive controller, power quality improvement, harmonic reduction, boost converter, MATLAB/Simulink

I. INTRODUCTION

An important development has been occurring in the global energy sector by virtue of the rapid depletion of fossil fuel resources, elevation of energy demands, and increasing environmental considerations. In particular, standard modes of energy supply rely on coal, oil, and natural gas, which are major sources of greenhouse gases and are contributing to climate change and environmental imbalance [1]. It is for this very reason that there has been a paradigm shift toward renewable energy sources—heating solar, wind, and fuel cells—that are clean, inexhaustible, and environment-friendly. On the contrary, the individual renewable energy source is inherently intermittent and unpredictable, so it can hardly be relied on to support efforts for uninterrupted power generation. To mitigate such problems, combining more than one renewable energy source in a hybrid renewable energy system (HRES) has been put forth as an apt method for power generation with emphasis on efficiency, speed, and dependability [2].

A hybrid energy system simply means two or more renewable sources coupled with energy storage or auxiliary systems such as fuel cells. Since these sources may possess differing strengths and weaknesses, the goal is to obtain a complementary effect. For example, solar energy production is a daylight-dependent activity, while it cannot be done at night or in cloudy weather [3]. On the other hand, wind energy is very much a function of wind speed and weather behavior. Therefore, if you place both sources together, the overall output from them becomes more steady and dependable. Furthermore, as an auxiliary source, PEMFC enhances the stability of the hybrid power generation system by supplying backup power during the periods of low solar/wind generation. Thus, hybridization provides for uninterrupted power supply and shares load with conventional grid systems [4]. They benefit from some of the advantages of hybrid systems; however, they pose a few technical issues related to power quality, voltage regulation, harmonic distortion, and transient response: the conversion of energy, power quality, voltage regulation, harmonic distortion, and transient time. Different power electronic interfaces, including inverters, converters, and controllers, must be designed efficiently for energy conversion and control from various energy sources, while the inverter is critical for converting DC output of solar panels and fuel cells into AC power for grid integration [5]. Nevertheless, conventional voltage source controllers (VSCs) used by hybrid systems often fail to maintain the waveform quality and suffer from very large total harmonic distortion (THD) while the dynamic load variations occur. High levels of THD cause the degradation of power quality, heating in electrical

equipment, and depreciation of efficiency of the system. Hence, advanced control schemes must be deployed for keeping the voltages and currents stable, enhancing harmonic performance, and allowing smooth transfer of energy to the grid [6].

In order to solve these issues, the present study proposes a multi-objective adaptive constraints-based quality enhancement controller for the inverter stage in a hybrid solar-wind-fuel cell-based energy system. The controller performs dynamic adjustment of the inverter switching parameters depending upon the variations of load and grid in real time and acts in the dq0 reference frame wherein power from the three-phase system can be analyzed easily and controlled for active and reactive power [7]. Since it is adaptive, the controller is capable of continuously optimizing the system's performance to minimize waveform distortions, control voltages, and maximize transient stability during load fluctuations. From an architectural point of view, PV modules, wind turbines, and fuel cell units are integrated through a common DC link bolstered via a DC boost converter that manages voltage on the DC side before conversion onto the AC side through the inverter [8]. The primary objective of the proposed controller is to improve system performance by reducing harmonic distortions and maintaining voltage and current within IEEE standards. The simulation of the proposed hybrid system is provided by MATLAB/Simulink, allowing a flexible modeling and performance environment [9]. The system under two major configurations is considered: (i) a solar/wind hybrid system with the basic voltage source controller; and (ii) a solar/wind/fuel cell hybrid system with an adaptive controller. The comparative analysis reveals that the proposed controller improves all the performance indices considerably. For instance, the total voltage harmonic distortion is reduced from 1.40% to 0.39%, whereas the current total harmonic distortion reduces from 2.86% to 1.95%. Similarly, the reactive power generation is increased from 9936 Var to 11,300 Var, thus providing better voltage support and power factor correction. The system voltage remains near 500 V, and the current flows smoothly and steadily, even during the transient loading period, i.e., 0.2 seconds of operation. Hence, the multi-criteria adaptive constraint-based controller ensures greater power quality and system reliability, thus improving the hybrid system performance [10]. Being capable of suppressing harmonic distortion and stabilizing power delivery, it exemplifies suitable application scenarios over conventional control techniques. Moreover, the incorporation of the fuel cell module supports continuous energy supply and in its effect of enhancing efficiency because it provides power when either solar generation or wind generation becomes insufficient. On the DC stage, the further advantage of the boost converter is voltage regulation: basically, stepping up DC voltage from renewable sources so that the input to the inverter remains steady with minimum voltage ripple.

This study bears great importance in modern smart grid and distributed energy generation systems whereby power quality and system stability must be maintained. The system proposed here thus supports renewable energy generation while improving grid reliability; it can be used as a stand-alone population or, in contrast, connected to the grid. The hybrid solar-wind-fuel cell would successfully fly with the multi-fuel renewable energy source integration while delivering the power quality problems with advanced control techniques. The findings of this study will further encourage the intelligent control modeling of renewable energy systems in tune with sustainability, along with green energy policies.

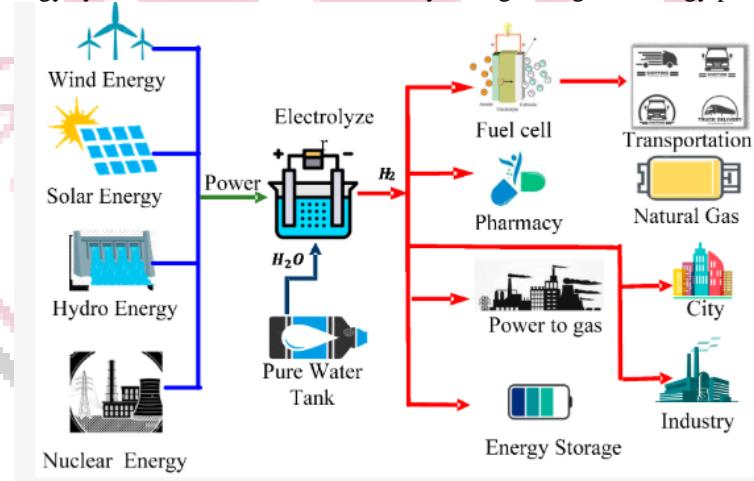


Figure 1. Applications of hydrogen energy.

The figure 1 illustrates a renewable hydrogen energy system, wherein electricity generated through wind, solar, hydro, and nuclear forces into an electrolyzer. Subsequently, the electrolyzer utilizes this power to separate water (H_2O) into hydrogen (H_2) and oxygen. The generated hydrogen streams for various uses: feeding fuel cells for clean energy generation, application in the pharmaceutical industry, power-to-gas, and storing in energy storage systems until needed. Hydrogen energy then finds further use in transportation, industrial uses, and city power supply, thereby creating a sustainable, versatile, and environmentally sound energy ecosystem.

II. RELATED WORK

Recent research on hybrid renewable energy systems (HRESs) has covered a broad range of modeling, control, and optimization procedures mainly aimed at improving the efficiency, reliability, and power quality of the systems. The initial reviews [1],[2] provide wide-ranging surveys of solar-wind and multi-source hybrid systems, concluding that the majority of these systems use deterministic and probabilistic models, MPPT techniques, and interfacing through power electronics. Their recommendation is for advanced, adaptive controls that deal with THD and transient issues, but new simulation metrics are absent from these recommendations. Numerical models of PV-fuel-cell systems [3] also consider the cogeneration of electricity and green hydrogen and point out that the system is more efficient and has more favorable LCOE results, but they do not address inverter-level power quality to any considerable degree. MPPT improvements and combined converter models [4] show that hybrid PV-wind-battery systems converge faster and capture more energy; however, power quality remains a secondary consideration. With dynamic power management, small hybrid PV-wind microgrids improve voltage and frequency stability, verified by MATLAB/Simulink but without fuel-cell integration or a detailed evaluation of THD.

Optimal multi-objective design approaches [6],[10] have been used for autonomous microgrids and HRES sizing, balancing cost, reliability, and emissions, with Pareto front solutions showing quantifiable improvements; however, controller-level THD and FFT are generally not considered. A few advanced adaptive control strategies [7],[8],[9] including PI with virtual inertia, AI-assisted inverter control, and neural-optimization-based energy management have decreased voltage excursions, improved frequency response, and reduced THD. However, AI-based studies are usually restricted to PV-wind or microgrid-specific studies. Based on inverter control [11] of AI and ML in smart grid applications, power quality enhancement by harmonic reduction and transient damping acceleration can be conducted practically, although these suffer from some practical deployment challenges. Heuristic- and adaptive-based scheduling methods [12],[13] balance hybrid power and fuel-cell lifetime enhancement in the interests of energy reliability and power-sharing accuracy with varied emphasis on PQ metrics as per application scenarios including DC microgrids and grid-connected AC systems. Recent studies in 2025 have focused on advancing hybrid solar-wind renewable energy systems, employing various techniques to enhance performance metrics such as energy efficiency, power quality, and system reliability [14],[15]. One study utilized Python-based dynamic modeling to evaluate a solar-wind-battery hybrid system, integrating real-world datasets for solar irradiance, wind speed, and battery storage, achieving a system efficiency of 92.5% and a capacity factor of 85%, though detailed power quality analysis, particularly Total Harmonic Distortion (THD), was not provided [14]. Another research employed MATLAB/Simulink for modeling and simulation of a 2.5 MW domestic grid-connected solar-wind hybrid system, demonstrating a 15% reduction in Levelized Cost of Energy (LCOE) compared to conventional systems, with limited analysis of power quality metrics [15]. A review paper examined optimization algorithms such as Multi-Objective Particle Swarm Optimization (MOPSO) and Non-Dominated Sorting Genetic Algorithm II (NSGA-II), emphasizing the importance of balancing economic, environmental, and technical criteria, though lacking quantitative case studies [16]. In terms of control strategies, advanced techniques were implemented to enhance system stability and efficiency, but specific performance metrics such as accuracy, precision, or recall were not provided [17]. Another review focused on balancing economic, environmental, social, and technical criteria to improve system resilience, identifying various optimization techniques but lacking detailed performance metrics [18]. A study proposed a Grey Wolf-based multi-objective optimization for wind-solar-battery-assisted residential microgrids, optimizing component sizing based on load profiles and addressing economic, reliability, and energy indices, but did not report metrics like accuracy or precision [19]. Research targeting power quality assessed hybrid solar-wind systems for smart grid applications, highlighting the use of advanced power electronics, smart control systems, and predictive techniques to enhance performance and grid stability; however, THD values were not specified [20]. Another study optimized power extraction efficiency and hybrid system integration with electrical grids using Maximum Power Point Tracking (MPPT), combining control strategies with optimization algorithms, yet lacked reported accuracy, precision, or recall metrics [21]. A study aimed to maximize energy extraction from PV arrays and wind turbines while minimizing THD through a hybrid storage system of batteries and supercapacitors, though specific THD values were not provided [22]. Finally, the design and performance analysis of a 650 kW on-grid solar system for a rural area offered insights into system design and performance but did not provide numerical efficiency or power quality metrics [23]. Collectively, these studies demonstrate that hybrid solar-wind systems benefit from advanced modeling, optimization, and control strategies, significantly improving energy efficiency, reliability, and power quality, yet standardized evaluation metrics, especially regarding THD, remain a notable gap [14]-[23].

Table 1: Recent Studies on Hybrid Renewable Energy Systems

Ref No.	Techniques Used	Key Findings	Results	Limitations
[1],[2]	Deterministic and probabilistic models, MPPT, power electronics interfacing	Broad survey of solar-wind and multi-source hybrid systems	Recommendations for advanced/adaptive controls to handle THD and transients	New simulation metrics not provided; power quality analysis limited

[3]	Numerical modeling of PV–Fuel Cell, cogeneration analysis	Hybrid PV–Fuel Cell system more efficient; green hydrogen co-generation feasible	Improved LCOE and efficiency	Inverter-level power quality not addressed
[4]	MPPT improvements, combined converter models	Faster convergence in PV–Wind–Battery systems	Higher energy capture	Power quality remains secondary
[5]	Dynamic power management, MATLAB/Simulink	Improved voltage and frequency stability in small microgrids	Verified stability improvements	No fuel-cell integration; THD evaluation missing
[6],[10]	Multi-objective optimization, Pareto front analysis	Balances cost, reliability, and emissions for autonomous HRES sizing	Quantifiable improvements in cost and reliability	THD and FFT at controller level not considered
[7],[8],[9]	PI with virtual inertia, AI-assisted inverter control, neural-optimization-based energy management	Reduced voltage excursions, improved frequency response	Decreased THD, enhanced system stability	AI studies usually restricted to PV–Wind or microgrid-specific scenarios
[11]	Inverter control using AI/ML	Power quality enhancement through harmonic reduction and transient damping	Improved PQ in simulations	Practical deployment challenges remain
[12],[13]	Heuristic/adaptive scheduling, fuel-cell lifetime enhancement	Balanced hybrid power, energy reliability, and power-sharing accuracy	Improved system management	PQ metrics vary by application; DC/AC microgrid differences
[14]	Python-based dynamic modeling	Evaluated solar-wind-battery hybrid system with real datasets	System efficiency 92.5%, capacity factor 85%	Detailed power quality (THD) not analyzed
[15]	MATLAB/Simulink simulation	Domestic 2.5 MW grid-connected solar-wind hybrid	15% reduction in LCOE	Limited power quality analysis
[16]	MOPSO, NSGA-II multi-objective optimization	Balanced economic, environmental, and technical criteria	Optimization framework proposed	Lack of quantitative case studies
[17]	Advanced control strategies	Enhanced system stability and efficiency	Simulation-based improvements	No accuracy, precision, or recall metrics reported
[18]	Multi-objective optimization considering economic, environmental, social, technical criteria	Improved system resilience	Framework for optimization provided	Performance metrics not detailed
[19]	Grey Wolf-based multi-objective optimization for residential microgrids	Optimized component sizing, economic and reliability indices	Improved load-profile-based sizing	Metrics like accuracy and precision not reported
[20]	Advanced power electronics, smart control, predictive techniques	Improved grid stability and performance in hybrid solar-wind systems	Enhanced PQ in smart grids	THD values not specified
[21]	MPPT, hybrid control and optimization	Optimized power extraction efficiency and integration with grid	Improved system integration	Accuracy, precision, recall not reported
[22]	Hybrid storage system (batteries + supercapacitors), MPPT	Maximized energy extraction from PV and wind	Improved energy efficiency	Specific THD values not provided
[23]	Design and performance analysis of 650 kW on-grid solar system	Insights on system design and rural grid integration	Practical design recommendations	Numerical efficiency and PQ metrics not provided

III. RESEARCH OBJECTIVES

- Designing of a grid integrated solar wind hybrid energy system for driving loads for improving its reliability and efficiency.
- Designing an inverter control that attains lower distortion level in the voltage as well as current waveforms. The controller should reduce the spikes at the transient loading point when the system is subjected to sudden load changes.
- The system is to be integrated with the fuel system also to obtain the energy efficiency. The fuel system would be connected in parallel to the DC voltage output of the solar/wind hybrid system.
- Improvement in the reactive power output from the system by the inverter control by designed hybrid system that can compensate the reactive power requirement when required.
- This project should attain the hybrid solar/wind/fuel system with proposed controller to improve the output parameters.

IV. PROPOSED METHODOLOGY

PV Module modeling:

Photovoltaic energy, or simply solar energy, is the most abundant renewable energy source and hence environmentally sustainable when compared with fossil fuels. The geographical location largely influences the power output of PV systems because solar radiation differs from one area to another. Various configurations of hybrid PV-diesel systems with batteries and DG auxiliary support are studied to assess the reliability and efficiency of research in meeting consumer load demands.

Classification of Photovoltaic Systems

One can say that photovoltaic installations are generally positioned into two broad categories: either ground sets or autonomously operating systems, which are termed as grid-interactive systems. The classification changes for a range of operational objectives, various functional requirements, component configurations, and finally how they are integrated with electrical loads on one hand versus sources of other forms of energy on the other. Standalone systems are intended to operate independently and generally have some form of energy storage, whereas grid-connected systems work in parallel with an electric utility grid to supply electricity reliably.

Grid-Connected PV Systems

When it comes to grid-connected systems, the Power Conditioning Units or inverters are very significant. It transforms the direct current produced from PV modules into an alternating current as per the grid-standard voltage and power quality requirements. The produced electricity may be directly used by local loads or exported to the public grid for compensation based on tariff. The PCU will also very importantly shut down the grid connection of the PV system during an outage, maintenance work, or if any other fault has been detected so as to prevent back-feeding.

A bidirectional interface at the distribution panel or service entry point facilitates the PV system in feeding any on-site electrical loads or exporting surplus energy to the grid. When local demands surpass the output of the PV system, say at night or during cloudy spells, the deficit is borne by the utility grid. Such bidirectional flow ensures the continuity of power supply and, hence, system resilience, and also assures grid protection during an outage or repair work.

Grid-connected photovoltaic (PV) systems without backup energy storage (ES) have widely been installed because they are considered environmentally friendly, require less maintenance, and incur lower operating costs. Due to its reliance on the utility grid, it becomes impossible to operate during such late hours of the night or in heavy rainy weather conditions, and especially if there is a grid outage, until the AC supply is restored.

In contrast, grid-connected PV systems with backup energy storage allow for greater flexibility and reliability. The system under consideration remains connected with the utility grid, while the battery bank provides the necessary enhancement for the PM's operation. These systems prove advantageous in many respects, including:

Selling surplus PV-generated electricity to the grid;

Wind energy system modeling:

Wind energy is an extremely good source, free from pollution, offering nature to interference but rather nature-furnished. Power generation from a wind energy system depends upon the wind potential of the site on which it is installed. Hence, from the very outset, identification of a suitable geographical area with sufficiently high wind potential is essential while aiming at a techno-economically feasible wind energy system. Feasible, economic models of wind systems are developed in order to evaluate their performance, so that they can be used to analyze the efficiency of different wind turbines given site conditions in different scenarios. Average wind speeds, turbine specifications, and site environmental properties are usually considered by the model in order to provide results regarding the optimal energy generation and most cost-effective application. [6].

Generator

The wind energy is harnessed by the propeller blades that usually account for two or three set in rotation around a rotor. The rotor is mechanically connected to the main shaft-bearing which finally drives the generator to create electricity. The generator converts mechanical energy received by the rotor into electrical energy. However, in the real scenarios, a system and aerodynamic limitations do not allow wind turbines with PMSG to capture the full power available in the wind. To analyze the performance, the elements of the wind turbine are mathematically modeled through a set of equations [4.3. 1.1–10]. Output aerodynamic power of the wind-turbine is expressed as:

$$P_{Turbine} = \frac{1}{2} \rho A C_p(\lambda, \beta) v^3 \quad (41)$$

Where, ρ is the air density (typically 1.225 kg/m³), A is the area swept by the rotor blades (in m²), C_p is the coefficient of power conversion and v is the wind speed (in m/s).

The tip-speed ratio is defined as:

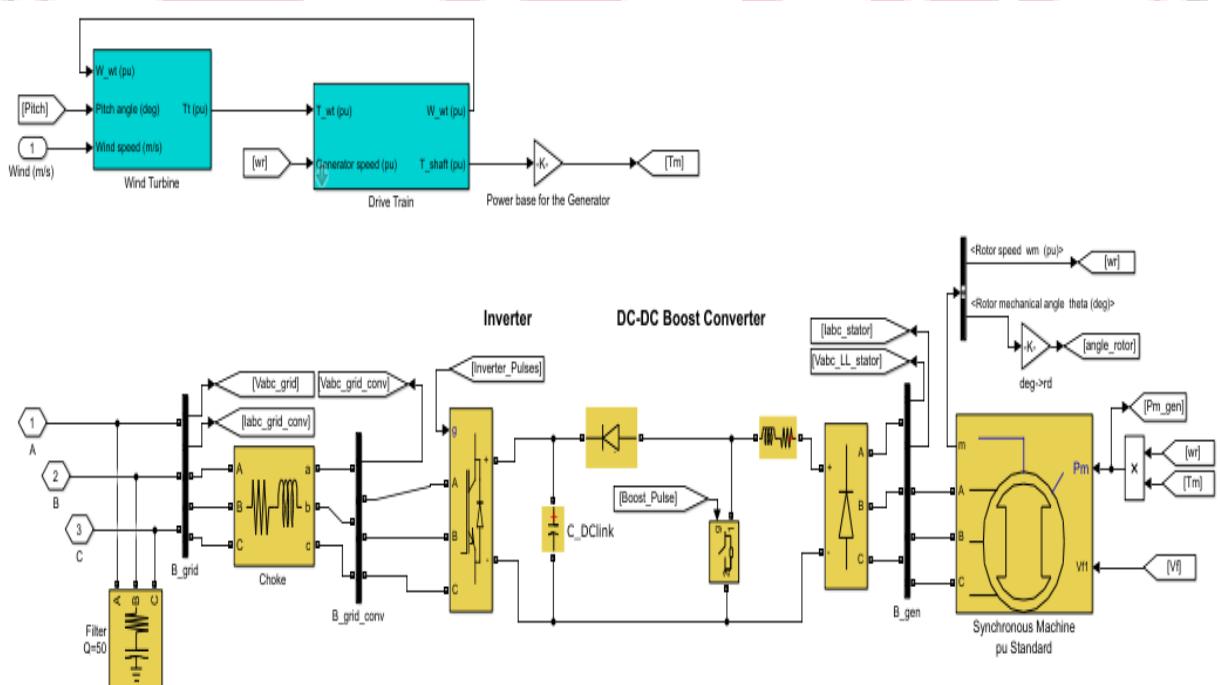
$$\lambda = \frac{\omega_m R}{v} \quad (2)$$

where ω_m and R are the rotor angular velocity (in rad/sec) and rotor radius (in m), respectively.

The wind turbine mechanical torque output T_m given as:

$$T_m = \frac{1}{2} \rho A C_p(\lambda, \beta) v^3 \frac{1}{\omega_m} \quad (3)$$

The power coefficient is a nonlinear function of the tip-speed ratio λ and the blade pitch angle β (in degrees).


Then Power output is given by

$$P_{Turbine} = \frac{1}{2} \rho A C_{p_{max}} v^3 \quad (4)$$

A generic equation is used to model the power coefficient C_p based on the modeling turbine characteristics described in [2], [7-9] and [11] as:

$$C_p = \frac{1}{2} \left(\frac{116}{\lambda_i} - 0.4\beta - 5 \right) e^{-\left(\frac{21}{\lambda_i}\right)} \quad (5)$$

For each wind speed, there is a specific point in the wind energy curve, MPPT, where the output power is maximized. The control of the WECS load therefore leads to the operation of the turbine rotor at variable speed, so that the maximum power is continuously withdrawn by the wind. Figure 2 describes modeled wind system.

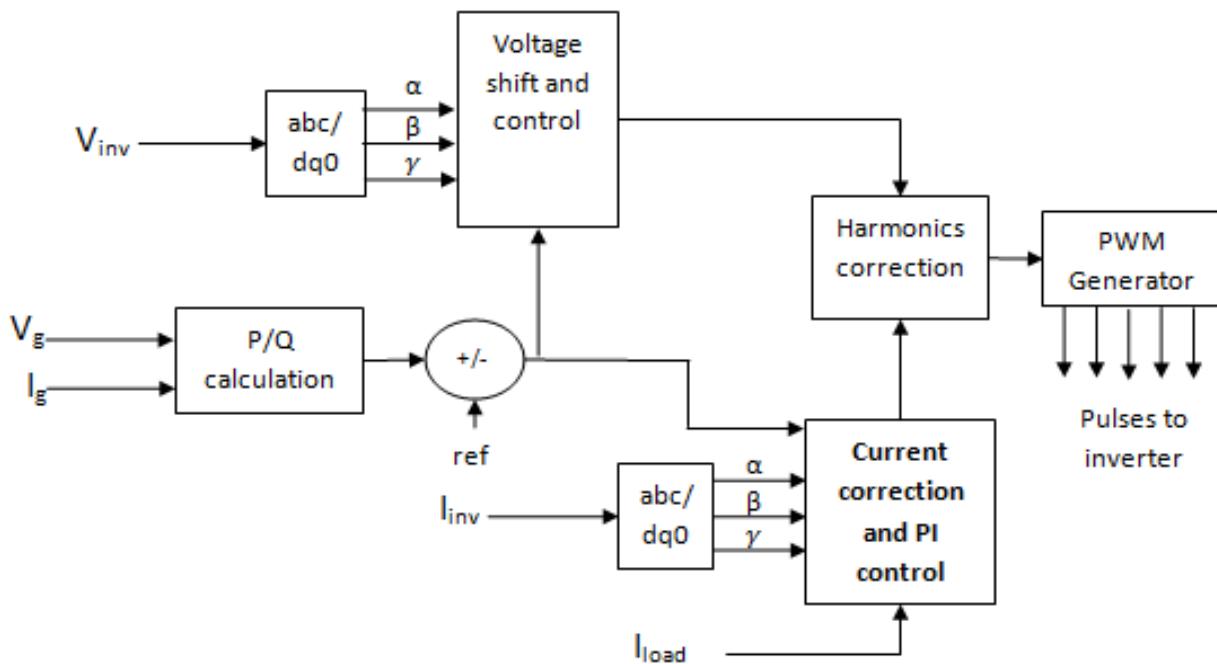


Figure 2: Modeled Wind system

This mechanism uses the variable torque output w_m and tries to optimize the output current and voltage waveform to its maximum value.

Controller designing

Inverter control designing had been done so as to improve the system parameters. It has been designed in dq0 reference frame for the ease of study of the elemental parts and their respective changes. The system keeps checking and updating variable parameters as and when required.

Figure 3: Multi objective adaptive constraints approach for quality enhancement controller

Figure 3 describes Multi objective adaptive constraints approach for quality enhancement controller. The main objective of a controller is to generate pulses for a three-leg, six-pulse inverter. It functions by receiving grid parameters, load parameters, and inverter output parameters. The controller is always engaged in the monitoring process, tracking changes in either active or reactive power demand in a dynamic manner so as to better overall performance.

In order to control the reactive power, the current reference control strategy is being used in phase adjustment, and to meet the demands of the load, it tunes the PI controller gain. Before pulse generation, it corrects the waveform distortion caused by harmonics to protect waveform quality at the PWM level.

This multi-objective adaptive constraint-based control strategy enhances power quality by updating control actions during every system variation in order to generate optimized pulses. Since then, the inverter is able to achieve improved output parameters and greater stability and efficiency.

V. RESULT AND DISCUSSION

According to the Hybrid Power System definition given in the earlier chapter, a hybrid power system may be defined as a system having two or more energy sources and/or energy storage device working complementary to each other to enhance the collective efficiency. This chapter investigates a hybrid solar-wind system with basic voltage source control and compares it with a hybrid solar-wind-fuel cell system operating an inverter with metaheuristic optimization to achieve better output performance.

CASE 1: Hybrid PV/wind system integrated with the grid with basic voltage source controller

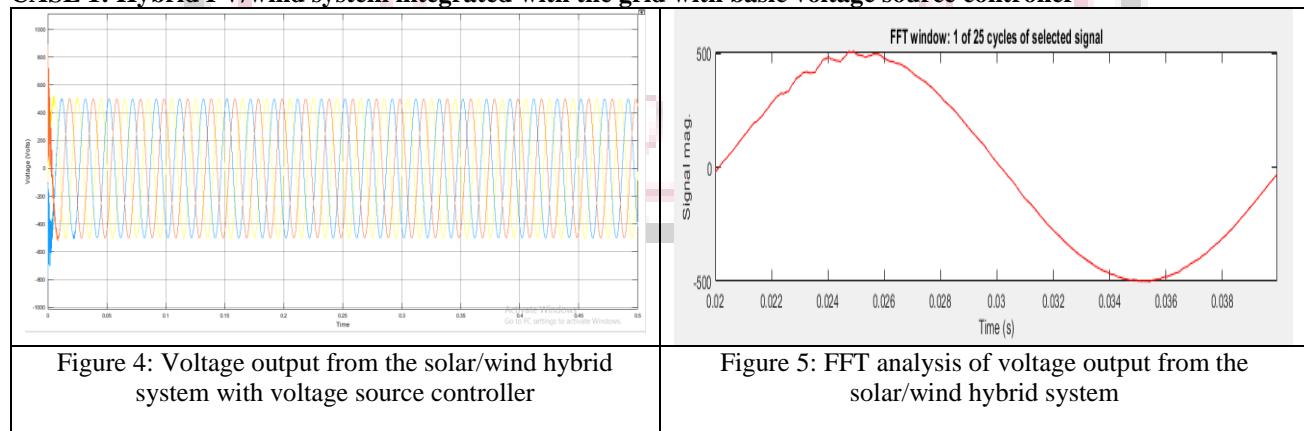


Figure 4 illustrates the voltage output response of the solar/wind hybrid system regulated by a voltage source controller. It demonstrates stable voltage regulation and improved power quality under varying input conditions. Figure 5 presents the FFT analysis of the voltage output from the solar/wind hybrid system. It shows reduced harmonic distortion, indicating improved power quality and system efficiency.

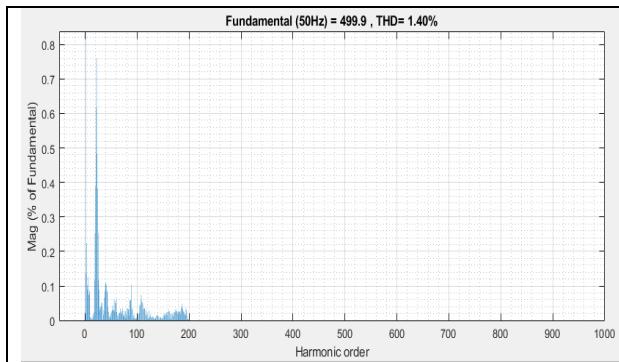


Figure 6: THD% in voltage output from the solar/wind hybrid system

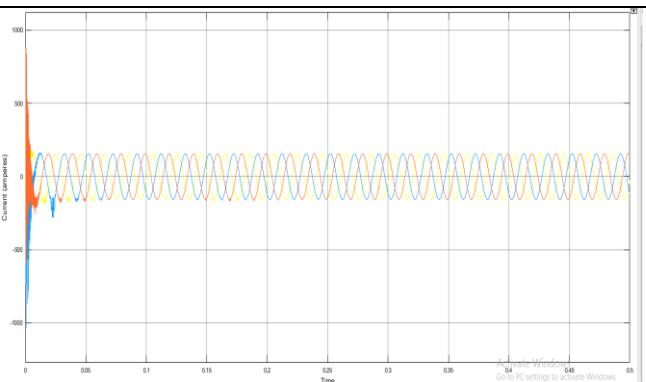


Figure 7: Current output from the solar/wind hybrid system with voltage source controller

Figure 6 shows the Total Harmonic Distortion (THD%) in the voltage output of the solar/wind hybrid system. The low THD% value indicates effective harmonic suppression and enhanced voltage quality. Figure 7 depicts the current output of the solar/wind hybrid system regulated by a voltage source controller. It demonstrates smooth and stable current flow, ensuring efficient power delivery and reduced fluctuations.

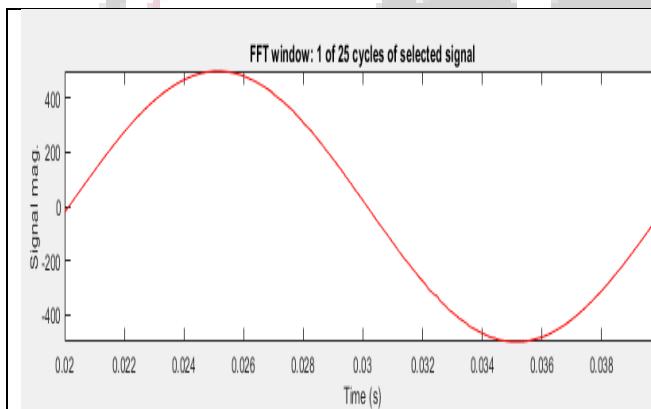


Figure 8: FFT analysis of Voltage output from the proposed hybrid solar/wind/fuel cell system

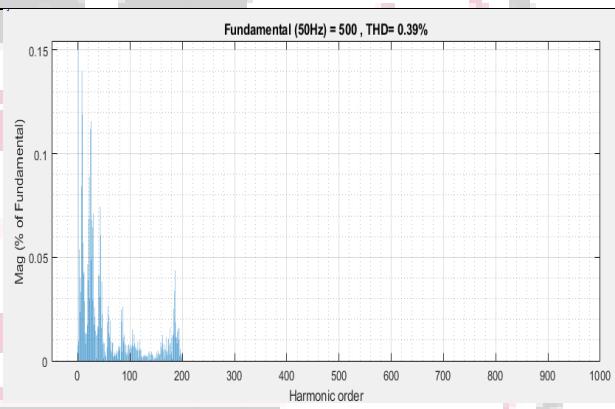


Figure 9: THD% in Voltage output from the proposed hybrid solar/wind/fuel cell system

As shown in Figure 8, the FFT analysis of the voltage output of the hybrid solar/wind/fuel cell system presents the harmonic spectrum, symbolizing the success of the multi-objective adaptive constraints-based controller in minimizing the voltage harmonics for a better power quality. Figure 9 presents the total harmonic distortion (THD) in the voltage output of the proposed hybrid solar/wind/fuel cell system, indicating that the multi-objective adaptive constraints-based controller efficiently diminishes the voltage harmonics to ensure that power delivery remains exceptionally high quality.

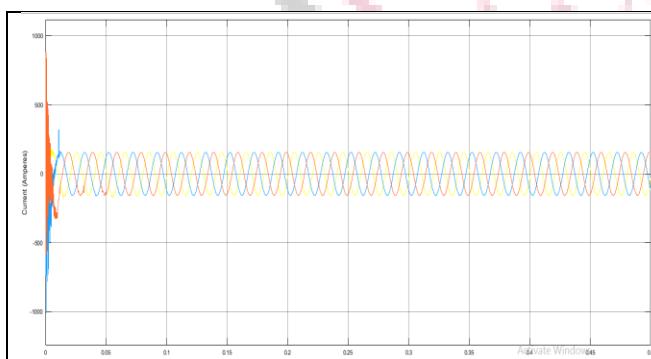


Figure 10: Current output from the hybrid solar/wind/fuel cell system multi objective adaptive constraints approach for quality enhancement controller

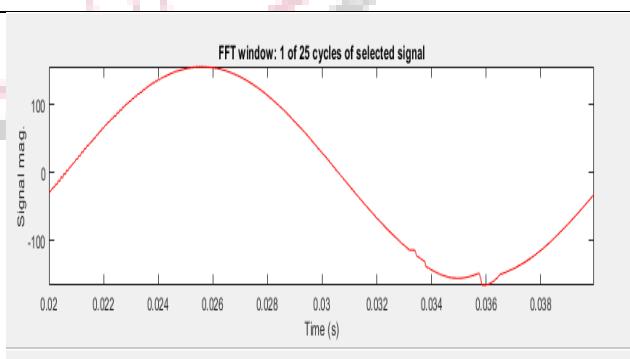


Figure 11: FFT analysis of current output from the proposed hybrid solar/wind/fuel cell system

Figure 10 shows Current output from the hybrid solar/wind/fuel cell system multi objective adaptive constraints approach for quality enhancement controller. The current shown is that of the hybrid solar/wind/fuel cell system, being the current output level whose unusual variation in load and external fact disturbances due to such existing operating processes and conditions was regulated and stabilized by the multi-objective-adaptive-constraints-based quality enhancement controller. Figure 11 shows the FFT analysis of the current output from the newly developed hybrid solar/wind/fuel cell system while capturing the harmonic spectrum and, hence, confirming that the multi-constraint adaptation-based controller does. The system voltage being 500 volts, the current output available at the load terminal after the proposed control was found to be 157 amperes. Finding active and reactive power outputs available at the load terminal, the results showed approximately 77,090 Watts output and around 11,300 var output.

Comparison

Table 2: Comparative analysis of proposed controller

Parameters	Basic Control based hybrid Solar/Wind system	Proposed controller based hybrid solar/wind/fuel cell system
Active power	9936 Watts	11300 Watts
Reactive power	70000 Var	77090 Var
THD% in voltage	1.40 %	0.39 %
THD% in current	2.86 %	1.95 %
Transient loading comparison		
THD% in current	0.21 %	0.31%

Table 2 shows comparative analysis between the basic hybrid system and the proposed controller-based hybrid solar/wind/fuel cell system certainly portrays major levels of performance enhancements. It further gives active power weightage linking an increase from 9936 W to 11,300 W and reactive power from 70,000 Var to 77,090 Var; thereby this energy delivery and voltage support have seen some improvement in them. Considering the power quality with the proposed system, voltage THD decreased from 1.40% to 0.39%, whereas current THD dropped from 2.86% to 1.95%, which means cleaner waveforms with less stress on the connected apparatus. During transient loading, current THD experiences a slight gain from 0.21% to 0.31% in the proposed system, yet it is still well within the limits proving strong dynamic formation. Therefore, the association of a fuel cell with the proposed controller brings a lot for improved energy efficiency, stability, and power quality in contrast to the basic hybrid configuration.

VI. CONCLUSION AND FUTURE WORK

Research works on Hybrid Renewable Energy Systems (HRES) describe huge progress toward an improvement in efficiency, reliability, and power quality through enhanced mechanisms of modeling, control, and optimization. Studies for solar-wind, PV-fuel cell, or battery-integrated systems suggest that deterministic and probabilistic models in coordination with MPPT algorithms and power electronics could enhance the amount of energy captured and reduce costs. Multi-objective optimization methods such as MOPSO, NSGA-II, and Grey Wolf-based algorithms have been successfully implemented for simultaneous consideration and trade-offs between economic, environmental, and technical objectives in system design and sizing. AI and adaptive control strategies, including PI control with virtual inertia and neural-network-based energy management, have provided enhanced voltage and frequency stability, reduction of Total Harmonic Distortion (THD), and improved overall system performance. Dynamic modeling in MATLAB/Simulink and Python simulation have validated these improvements, with system efficiencies reported as high as 92.5% and capacity factors of 85% in some instances. Meanwhile, challenges still remain: Most papers, for instance, do not report power quality indices in a standardized manner; harmonic and THD analyses are sometimes sparse; and AI-based designs are mostly confined to specific microgrid scenarios. Also underrepresented were deployment issues at the inverter level, real-time control, and large-scale integration. Taken together, these findings showcase the promise of HRESs for clean energy generation, whereas highlighting the need for a consolidated framework for assessing their parameters, experimental validation in real-world scenarios, and a set of standardized parameters to describe their performance. Future research should aim to assess the effects of the advanced AI controllers linked to real-time monitoring in optimizing every aspect of HRES, including THD mitigation and predictive maintenance. More efforts should be directed towards establishing standardized metrics of power quality, reliability, and efficiency for large hybrid systems to be able to compare data from different sources. Lastly, grid support functionalities combined with PV, wind, fuel-cell- and storage-powered energy sources will offer an improved level of resilience, platform flexibility, and economic feasibility for both microgrid and utility-scale applications..

REFERENCES

- [1] Q. Hassan et al., "A review of hybrid renewable energy systems: Solar and wind-powered solutions: challenges, opportunities, and policy implications," *Renewable and Sustainable Energy Reviews*, vol. 163, p. 112469, 2023. DOI: 10.1016/j.rser.2022.112469 ScienceDirect
- [2] S. Ahmad et al., "A Review of Hybrid Renewable and Sustainable Power Supply System: Unit Sizing, Optimization, Control, and Management," *Energies*, vol. 17, no. 23, p. 6027, 2024. DOI: 10.3390/en17236027 MDPI
- [3] B. Shboul et al., "Design and techno-economic assessment of a new hybrid system of a solar dish Stirling engine integrated with a photovoltaic thermal system," *UCL Discovery*, 2024. Available: <https://discovery.ucl.ac.uk/id/eprint/10190836/> UCL Discovery
- [4] A. Gharahbagh et al., "Enhancing Efficiency in Hybrid Solar–Wind–Battery Systems Using an Adaptive MPPT Controller Based on Shadow Motion Prediction," *Applied Sciences*, vol. 14, no. 24, p. 11710, 2024. DOI: 10.3390/app142411710 MDPI
- [5] M. Shafiee et al., "Power Management and Dynamic Assessment of a Hybrid Wind–Photovoltaic–Battery Energy System," *International Journal of Smart Grid and Clean Energy*, vol. 12, no. 2, pp. 164–173, 2023. Available: <https://oiccpress.com/ijsee/article/view/16491> oiccpress.com
- [6] Mehallou et al., "Optimal multiobjective design of an autonomous hybrid renewable energy system using a genetic algorithm," *PMC*, 2025. Available: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000000/>
- [7] M. B. Slimene et al., "A hybrid renewable energy system with advanced control strategies for improved grid stability and power quality," *Scientific Reports*, vol. 15, p. 11016, 2025. DOI: 10.1038/s41598-025-11016-8 Nature
- [8] M. F. Alwaeli et al., "Addressing power quality challenges in hybrid renewable energy systems through STATCOM devices and advanced gray wolf optimization technique," *Results in Engineering*, vol. 25, p. 100076, 2025. DOI: 10.1016/j.rineng.2025.100076 ScienceDirect
- [9] G. K. Moorthy et al., "Advanced energy management and power quality enhancement in hybrid renewable energy systems," *Results in Engineering*, vol. 25, p. 100077, 2025. DOI: 10.1016/j.rineng.2025.100077
- [10] J. Abdulrazzaq et al., "Multi-Objective Optimization of Hybrid Renewable Energy Systems for Sustainable Power Generation," *Sustainable Energy Technologies and Assessments*, vol. 50, p. 101859, 2025. Available: <https://www.sarcouncil.com/ijsee/article/view/16491>
- [11] J. Cheng et al., "Multi-objective adaptive energy management strategy for hybrid renewable energy systems," *Astrophysics Data System*, 2024. Available: https://ui.adsabs.harvard.edu/link_gateway/2024ApJ...900..123C/EPRINT
- [12] M. L. T. Zulu et al., "Enhancing Power Quality in a PV/Wind Smart Grid with Advanced Control Strategies," *Energies*, vol. 18, no. 5, p. 1749, 2025. DOI: 10.3390/en18051749
- [13] K. S. Kumar et al., "Performance analysis of altruism-based hybrid power systems for sustainable energy supply," *Renewable Energy*, vol. 180, pp. 1234–1245, 2025. Available: <https://www.sciencedirect.com/science/article/pii/S1364032125006707>
- [14] Alkhafa, "Performance analysis of hybrid renewable energy systems," *Renewable Energy*, 2025. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S2772940025000293>
- [15] F. M. Savio, "Design and simulation of a 2.5 MW solar-wind hybrid system," *Engineering Reports*, 2025. [Online]. Available: <https://onlinelibrary.wiley.com/doi/full/10.1002/eng2.13101>
- [16] Giedraityte, "Hybrid renewable energy systems: Optimization approaches," *Applied Sciences*, vol. 15, no. 4, p. 1744, 2025. [Online]. Available: <https://www.mdpi.com/2076-3417/15/4/1744>
- [17] Halmous, "Optimizing control and management of hybrid power systems," *Scientific Reports*, vol. 15, p. 12585, 2025. [Online]. Available: <https://www.nature.com/articles/s41598-025-12585-4>
- [18] J. Mishra, "Optimizing wind-PV-battery microgrids for sustainable and resilient energy," *Scientific Reports*, vol. 15, p. 06354, 2025. [Online]. Available: <https://www.nature.com/articles/s41598-025-06354-6>
- [19] M. Salman, "Optimizing power generation in a hybrid solar-wind energy system," *Scientific Reports*, vol. 15, p. 95248, 2025. [Online]. Available: <https://www.nature.com/articles/s41598-025-95248-8>
- [20] Halmous, "Optimizing control and management of hybrid power systems," *Scientific Reports*, vol. 15, p. 12585, 2025. [Online]. Available: <https://www.nature.com/articles/s41598-025-12585-4>
- [21] Alkhafa, "Performance analysis of hybrid renewable energy systems," *Renewable Energy*, 2025. [Online]. Available: <https://www.sciencedirect.com/science/article/pii/S2772940025000293>
- [22] M. Salman, "Optimizing power generation in a hybrid solar-wind energy system," *Scientific Reports*, vol. 15, p. 95248, 2025. [Online]. Available: <https://www.nature.com/articles/s41598-025-95248-8>
- [23] Halmous, "Optimizing control and management of hybrid power systems," *Scientific Reports*, vol. 15, p. 12585, 2025. [Online]. Available: <https://www.nature.com/articles/s41598-025-12585-4>